Article ID Journal Published Year Pages File Type
1148047 Journal of Statistical Planning and Inference 2012 10 Pages PDF
Abstract
We review the Fisher scoring and EM algorithms for incomplete multivariate data from an estimating function point of view, and examine the corresponding quasi-score functions under second-moment assumptions. A bias-corrected REML-type estimator for the covariance matrix is derived, and the Fisher, Godambe and empirical sandwich information matrices are compared. We make a numerical investigation of the two algorithms, and compare with a hybrid algorithm, where Fisher scoring is used for the mean vector and the EM algorithm for the covariance matrix.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,