Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1149216 | Journal of Statistical Planning and Inference | 2010 | 12 Pages |
Abstract
The analysis of crossover designs assuming i.i.d. errors leads to biased variance estimates whenever the true covariance structure is not spherical. As a result, the OLS F-test for the equality of the direct effects of the treatments is not valid. Bellavance et al. [1996. Biometrics 52, 607-612] use simulations to show that a modified F-test based on an estimate of the within subjects covariance matrix allows for nearly unbiased tests. Kunert and Utzig [1993. JRSS B 55, 919-927] propose an alternative test that does not need an estimate of the covariance matrix. Instead, they correct the F-statistic by multiplying by a constant based on the worst-case scenario. However, for designs with more than three observations per subject, Kunert and Utzig (1993) only give a rough upper bound for the worst-case variance bias. This may lead to overly conservative tests. In this paper we derive an exact upper limit for the variance bias due to carry-over for an arbitrary number of observations per subject. The result holds for a certain class of highly efficient balanced crossover designs.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Oliver Sailer,