Article ID Journal Published Year Pages File Type
1161927 Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 2010 11 Pages PDF
Abstract

Research in many fields of biology has been extremely successful in decomposing biological mechanisms to discover their parts and operations. It often remains a significant challenge for scientists to recompose these mechanisms to understand how they function as wholes and interact with the environments around them. This is true of the eukaryotic cell. Although initially identified in nineteenth-century cell theory as the fundamental unit of organisms, researchers soon learned how to decompose it into its organelles and chemical constituents and have been highly successful in understanding how these carry out many operations important to life. The emphasis on decomposition is particularly evident in modern cell biology, which for the most part has viewed the cell as merely a locus of the mechanisms responsible for vital phenomena. The cell, however, is also an integrated system and for some explanatory purposes it is essential to recompose it and understand it as an organized whole. I illustrate both the virtues of decomposition (treating the cell as a locus) and recomposition (treating the cell as an object) with recent work on circadian rhythms. Circadian researchers have both identified critical intracellular operations that maintain endogenous oscillations and have also addressed the integration of cells into multicellular systems in which cells constitute units.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
,