Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1283416 | Journal of Power Sources | 2016 | 7 Pages |
Abstract
Layered materials Na0.67+3xNi0.33LixTi0.67-xO2 with Li-substitution as x = 0, 0.05 and 0.11 have been synthesized and investigated as “bi-functional” electrodes for symmetric sodium ion cells. The samples with lithium substitution up to 0.11 are confirmed to be a single phase without impurities and introducing lithium into the transition metal layer increases the interlayer space of the layered materials. It is found that O3-type NaNi0·33Li0·11Ti0·56O2 exhibits two electrochemical working windows, 0.4-0.8 V and 3.1-3.75 V, for sodium ion storage. The as-proposed material thus can be employed as both positive and negative electrodes. As positive electrode, it shows a high working voltage of ca. 3.75 V versus Na+/Na and an initial capacity of 91 mAh gâ1 with 19% capacity loss after 100 cycles. When utilized as negative electrode, it delivers a low average voltage of ca. 0.65 V versus Na+/Na, along with a reversible capacity of 125 mAh gâ1 and 76% capacity retention after 200 cycles. A symmetric full cell based on the O3-type NaNi0·33Li0·11Ti0·56O2 “bi-functional” electrode has been developed. The cell exhibits a high voltage of 3.1 V and an energy density of 100 W h kgâ1 based on the total mass of active electrode materials.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Shuming Zhang, Yu Liu, Na Zhang, Kuan Zhao, Jianhua Yang, Shiyang He,