Article ID Journal Published Year Pages File Type
1284106 Journal of Power Sources 2014 10 Pages PDF
Abstract

•FL-MoS2/GNS composites are prepared by a facile cationic surfactant–hydrothermal route.•Cationic surfactants show some ability to control layer number of FL-MoS2 in the composites.•FL-MoS2/GNS exhibits outstanding electrochemical properties as a reversible lithium storage host.

Few-layer molybdenum disulfide/graphene (FL-MoS2/GNS) composites are fabricated by a facile hydrothermal route and a post-annealing with the assistance of various cationic surfactants (dodecyltrimethylammonium bromide, DTAB; octyltrimethylammonium bromide, OTAB; and tetrabutylammonium bromide, TBAB), which have different alkyl-chain lengths and stereo configurations. The effects of these cationic surfactants on the microstructures and electrochemical performances of the FL-MoS2/GNS for lithium storage are investigated. It is demonstrated the cationic surfactants show some ability to control the microstructure (layer number) of FL-MoS2 in composites. The electrochemical performances of FL-MoS2/GNS composites for lithium storage are greatly improved compared to the bare MoS2. Especially, FL-MoS2/GNS with ∼6 MoS2 layers prepared with the assistance of OTAB exhibits very high reversible capacity of ∼1200 mAh g−1 with excellent cycle stability and enhanced rate capability. Electrochemical impedance spectrum also confirms that the FL-MoS2/GNS composite electrodes exhibit much lower electron-transfer resistance than the MoS2. The remarkable electrochemical performances of FL-MoS2/GNS composites can be attributed to the synergistic interaction between FL-MoS2 and graphene and their quasi-3D architectures, which promote lithium diffusion, electron transfer and electrolyte access.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,