Article ID Journal Published Year Pages File Type
1284353 Journal of Power Sources 2013 7 Pages PDF
Abstract

•PtRu/C nanoparticles are riveted through glucose in-situ carbonization by hydrothermal method.•The durability of carbon riveted PtRu/C increases one time and also its activity enhances 6%.•Carbon nanolayer on the support surface inhibits the migration and coalescence of PtRu particles.•Increasing of Pt(0), Ru(0) and carbon groups on surface of riveted PtRu/C enhance its durability.

PtRu/C catalyst is synthesized by microwave-assisted polyol process. Then, the PtRu nanoparticles are riveted through glucose in-situ carbonization by hydrothermal method. X-ray diffraction, transmission electron microscopy, cyclic voltammograms, COad stripping voltammetry, electrochemical impedance spectroscopy and accelerated potential cycling tests have been carried out to characterize their properties. The experimental results indicate that the average sizes of PtRu nanoparticles grow up from 1.54 nm to 2.56 nm after hydrothermal method. The electrochemical active specific surface areas of as-prepared and carbon riveted PtRu/C are 73.0 m2 g−1 Pt and 89.6 m2 g−1 Pt, respectively. The durability of carbon riveted PtRu/C increases one time after APCT of 1000 cycles and its mass activity also enhances 6% in first cycles in comparison with that of as-prepared PtRu/C. An enhanced stability of carbon riveted PtRu/C is mainly attributed to the existence of carbon nanolayer on the surface of the support from glucose in-situ carbonization to inhibit the migration and coalescence of PtRu nanoparticles on the support during work. Besides, the increased ratio of Pt(0), Ru(0), and carbon groups with higher stability and the evidently decreased of PtO2 and RuOxHy on surface of carbon riveted PtRu/C is another important reason to enhance its durability.

Graphical abstractPtRu/C nanoparticles with higher stability are anchored through glucose in-situ carbonization by hydrothermal method.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,