Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1284823 | Journal of Power Sources | 2011 | 5 Pages |
In this study, a simple and cost-effective dry-pressing method has been used to fabricate a symmetrical solid oxide fuel cell (SOFC) where the dense yttria-stabilized zirconia (YSZ) electrolyte film is sandwiched between two symmetrical porous YSZ layers in which La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) based anode and cathode are incorporated using wet impregnation techniques. The maximum power densities (Pmax) of a single cell with 32 wt.% LSCM impregnated YSZ anode and cathode reach 333 and 265 mW cm−2 at 900 °C in dry H2 and CH4, respectively. The cell performance is further improved with additional impregnation of a small amount of Sm-doped CeO2 (SDC) or Ni. When 6 wt.% Ni as catalyst is added to both the anode and cathode, Pmax values of 559 and 547 mW cm−2 can be achieved, which are better than with SDC. The effect of Ni on the cathode performance is also investigated by impedance spectra analysis.