Article ID Journal Published Year Pages File Type
1285012 Journal of Power Sources 2010 5 Pages PDF
Abstract

A double-layer dual-composite cathode is fabricated and has an ideal cathode microstructure with large electrochemical active sites and enhanced the durability in solid oxide fuel cells (SOFCs). The insertion of a yttria-stabilized zirconia (YSZ)-rich functional layer between the electrolyte and the electrode allows for a graded transition of the YSZ phase, which enhances ionic percolation and minimizes the thermal expansion coefficient mismatch. Electrochemical measurements reveal that the double-layer composite cathode exhibits improved cathodic performance and long-term stability compared with a single-layer composite cathode. A cell with a well-controlled cathode maintains nearly constant interfacial polarization resistance during an 80 h accelerated lifetime test.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,