Article ID Journal Published Year Pages File Type
1285059 Journal of Power Sources 2010 6 Pages PDF
Abstract

A novel CuO-nanotubes/SnO2 composite was prepared by a facile solution method and its electrochemical properties were investigated as the anode material for Li-ion battery. The as-prepared composite consisted of monoclinic-phase CuO-nanotubes and cassiterite structure SnO2 nanoparticles, in which SnO2 nanoparticles were dramatically decorated on the CuO-nanotubes. The composite showed higher reversible capacity, better durability and high rate performance than the pure SnO2. The better electrochemical performance could be attributed to the introducing of the CuO-nanotubes. It was found that the CuO-nanotubes were reduced to metallic Cu in the first discharge cycle, which can retain tube structure of the CuO-nanotubes as a tube buffer to alleviate the volume expansion of SnO2 during cycling and act as a good conductor to improve the electrical conductivity of the electrodes.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,