Article ID Journal Published Year Pages File Type
1285185 Journal of Power Sources 2009 8 Pages PDF
Abstract

Ni–YSZ cermet is commonly used as the anode of a solid oxide fuel cell (SOFC) because it has excellent electrochemical performance, not only in hydrogen fuel, but also in a clean blended synthetic coal syngas mixture (30% H2, 26% H2O, 23% CO, and 21% CO2). However, trace impurities, such as phosphine (PH3), in coal-derived syngas can cause degradation in cell performance [J.P. Trembly, R.S. Gemmen, D.J. Bayless, J. Power Sources 163 (2007) 986–996]. A commercial solid oxide fuel cell was exposed to a syngas with 10 ppm PH3 under a constant current load at 800 °C and its performance was evaluated periodically using electrochemical methods. The central part of the anode was exposed directly to the syngas without an intervening current collector. Post-mortem analyses of the SOFC anode were performed using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the impurity PH3 caused a significant loss of the Ni–YSZ anode electrochemical performance and an irreversible Ni–YSZ structural modification. Ni5P2 was confirmed to be produced on the cell surface as the dominant nickel phosphorus phase.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,