Article ID Journal Published Year Pages File Type
1285233 Journal of Power Sources 2009 7 Pages PDF
Abstract

The electrochemical performances of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) electrodes were studied by half-cell measurements in the absence of chromia-forming alloy, in the presence of bare and Co coated E-brite alloy interconnects, respectively. The surface and cross-section properties of the bare and Co coated E-brite alloys, and LSCF electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, and electron probe microanalysis (EPMA). The results showed a rapid degradation in LSCF performance when the bare E-brite alloy was used as interconnect. The growth of chromia scale on the E-brite alloy and the increase of Cr content throughout the LSCF electrode were observed. The uniform and dense Co coating process was developed to coat the E-brite alloy by using both electroless and electrodeposition methods. It was demonstrated that the Co layer effectively mitigates the Cr migration, leading to improved electrochemical stability of LSCF electrodes.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,