Article ID Journal Published Year Pages File Type
1285241 Journal of Power Sources 2009 8 Pages PDF
Abstract

The stamped metal bipolar plate is a promising candidate of the traditional graphite plate for proton exchange membrane fuel cells (PEMFCs) due to its advantages, such as low cost, compactness, robustness and high production efficiency. This study proposes a new type of flow configuration, which is called slotted-interdigitated channel, for stamped metal bipolar plates. Numerical simulation of the flow distribution of slotted-interdigitated channels is studied by using three-dimensional computational fluid dynamics (CFD) and the results show the flow distribution is uneven. Consequently, an optimization model, based on a linear analytical model, is proposed to eliminate flow maldistribution. Finally, even flow distribution is obtained according to the optimum results and high fuel cell performance can be achieved.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,