Article ID Journal Published Year Pages File Type
1285848 Journal of Power Sources 2008 13 Pages PDF
Abstract

The fundamental aging mechanisms in double-layer capacitors based on alkylammonium electrolytes in acetonitrile were clarified for the first time. After abusive testing at cell voltages above 4 V, ultracapacitors cast out a crystalline mass of residual electrolyte, organic acids, acetamide, aromatics, and polymer compounds. The mixture could be reproduced by electrolysis. The decomposition products of active carbon electrodes and electrolyte solution after a heat treatment at 70 °C were identified by infrared and ultraviolet spectroscopy, liquid and headspace GC–MS, thermogravimetric analysis, and X-ray diffraction. The alkylammonium cation is destroyed by the elimination of ethene. The fluoroborate anion works as source of fluoride and hydrogenfluoride, and boric acid derivates. Acetonitrile forms acetamide, acetic and fluoroacetic acid, and derivates thereof. Due to the catalytic activity of the electrode, heterocyclic compounds are generated in the liquid phase. The etched aluminium support under the active carbon layer is locally destroyed by fluorination. Exploring novel electrolytes, ionic liquids were characterized by impedance spectroscopy.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,