Article ID Journal Published Year Pages File Type
1285860 Journal of Power Sources 2008 7 Pages PDF
Abstract

In the present study, composite polyelectrolyte membranes were prepared from sulfonated polystyrene and fullerene. The additive effect of the fullerene on the membrane properties – electric resistance, mechanical strength, oxidation resistance, and methanol permeability – were measured. The addition of fullerene improved the oxidation resistance, and reduced the methanol crossover. The mechanical strength of the fullerene-composite membrane, on the other hand, was not improved. The direct methanol fuel cell (DMFC) based on a 1.4 wt% fullerene-composite membrane showed the highest power density of 47 mW cm−2 at the current density of 200 mA cm−2 (this value is 60% of the Nafion-based DMFC). The transmission electron microscopy (TEM) observations suggest that the improved dispersity of the fullerene and the reduced number of micropores in the membranes would improve its performance in the fuel cell.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,