Article ID Journal Published Year Pages File Type
1286031 Journal of Power Sources 2016 12 Pages PDF
Abstract

•A fractional order model based on the PNGV model is proposed.•The battery non-linear model is stable and observable.•A state observer and a parameter identification method are studied.•The tests demonstrate the effectiveness of the battery model and SOC estimation method.

Accurately estimating the State of Charge (SOC) of the battery is the basis of Battery Management System (BMS). This paper has introduced a new modeling and state estimation method for the lithium battery system, which utilizes the fractional order theories. Firstly, a fractional order model based on the PNGV (Partnership for a New Generation of Vehicle) model is proposed after analyzing the impedance characteristics of the lithium battery and compared with the integer order model. With the observability of the discrete non-linear model of the battery confirmed, the method of the state observer based on the extended fractional Kalman filter (EFKF) and the least square identification method of battery parameters are studied. Then, it has been applied successfully to estimate the battery SOC using the measured battery current and voltage. Finally, a standard HPPC (Hybrid Pulse Power Characteristic) test is used for parameter identification and several experimental validations are investigated on a ternary manganese-nickel-cobalt lithium battery pack with a nominal capacity of 24 Ah which consists of ten Sony commercial cells (US18650GR G7) in parallels. The results demonstrate the effectiveness of the fractional order model and the estimation method.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,