Article ID Journal Published Year Pages File Type
1286365 Journal of Power Sources 2007 5 Pages PDF
Abstract

Novel composite electrolyte membranes consisting of [EMIm](FH)nF (EMIm = 1-ethyl-3-methylimidazolium, n = 1.3 and 2.3) ionic liquids and fluorinated polymers were synthesized and their physical and electrochemical properties were measured under unhumidified conditions for their application to the intermediate temperature fuel cells. The ionic conductivities of composite membrane, P(VdF-co-HFP)/s-DFBP-HFDP/[EMIm](FH)2.3F (1/0.3/1.75 in weight ratio), were 11.3 and 34.7 mS cm−1 at 25 and 130 °C, respectively. The open circuit voltage (OCV) observed for the single cell using [EMIm](FH)2.3F composite electrolyte was ∼1.0 V at 130 °C for over 5 h. The maximum power density of 20.2 mW cm−2 was observed under the current of 60.1 mA cm−2 at 120 °C. From the high thermal stability and high ionic conductivity, the fluorohydrogenate ionic liquid composite membranes are regarded as promising candidates for the electrolytes of the unhumidified intermediate temperature fuel cells.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,