Article ID Journal Published Year Pages File Type
1286401 Journal of Power Sources 2007 8 Pages PDF
Abstract

Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H2, CO and CO2 are generally the major products together with trace amounts of CH4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390–400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,