Article ID Journal Published Year Pages File Type
1286460 Journal of Power Sources 2007 8 Pages PDF
Abstract

Lithium-ion batteries have started replacing the conventional aqueous nickel-based battery systems in space applications, such as planetary landers, rovers, orbiters and satellites. The reasons for such widespread use of these batteries are the savings in mass and volume of the power subsystems, resulting from their high gravimetric and volumetric energy densities, and their ability to operate at extreme temperatures. In our pursuit to further enhance the specific energy as well as low-temperature performance of Li-ion batteries, we have been investigating various layered lithiated metal oxides, e.g., LiCoO2, LiNi0.8Co0.2 and LiNi0.8Co0.15Al0.05O2, as well as different low-temperature electrolytes, including ternary and quaternary carbonate mixtures with various co-solvents. In this paper, we report our recent studies on Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes, combined with three different low-temperature electrolytes, i.e.: (1) 1.0 M LiPF6 in EC:EMC (20:80), (2) 1.2 M LiPF6 in EC:EMC (20:80) and (3) 1.2 M LiPF6 in EC:EMC (30:70). Electrical performance characteristics were determined in laboratory glass cells at different discharge rates and different temperatures. Further, individual electrode kinetics of both Li1+x(Co1/3Ni1/3Mn1/3)1−xO2 cathodes and MCMB graphite anodes were determined at different temperatures, using dc micropolarization, Tafel polarization and electrochemical impedance spectroscopy (EIS). Analysis of these data has led to interesting trends relative to the effects of solvent composition and salt concentration, on the electrical performance and on the kinetics of cathode and anode.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,