Article ID Journal Published Year Pages File Type
1286623 Journal of Power Sources 2014 9 Pages PDF
Abstract

•LixNi1−xO was suppressed by Ru-doping as revealed by the presence of such an impurity phase in LiNi0.5Mn1.5O4.•LiNi0.4Ru0.05Mn1.5O4-1000 °C exhibits excellent electrochemical performances even at high C-rates.•The mass loadings of the cathodes significantly affect the delivered capacities especially at high C-rate.

The citric acid-assisted sol–gel method was used to produce the high-voltage cathodes LiNi0.5Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 at 800 °C and 1000 °C final calcination temperatures. High resolution powder diffraction using synchrotron radiation, inductively coupled plasma – optical emission spectroscopy and scanning electron microscopy analyses were carried out to characterize the structure, chemical composition and morphology. X-ray absorption spectroscopy studies were conducted to confirm Ru doping inside the spinel as well as to compare the oxidation states of transition metals. The formation of an impurity LixNi1−xO in LiNi0.5Mn1.5O4 powders annealed at high temperatures (T ≥ 800 °C) can be suppressed by partial substitution of Ni2+ by Ru4+ ion. The LiNi0.4Ru0.05Mn1.5O4 powder synthesized at 1000 °C shows the highest performance regarding the rate capability and cycling stability. It has an initial capacity of ∼139 mAh g−1 and capacity retention of 84% after 300 cycles at C/2 charging–discharging rate between 3.5 and 5.0 V. The achievable discharge capacity at 20 C for a charging rate of C/2 is ∼136 mAh g−1 (∼98% of the capacity delivered at C/2). Since the electrode preparation plays a crucial role on parameters like the rate capability, the influence of the mass loading of active materials in the cathode mixture is discussed.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,