Article ID Journal Published Year Pages File Type
1286947 Journal of Power Sources 2007 4 Pages PDF
Abstract

A 100-mAh class of aluminum-laminated film packaged organic radical battery with a poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) composite cathode and a graphite anode has been fabricated. Its total weight was 22 g and the thickness was 4.3 mm. Because PTMA comprised only 6.2% of the total cell weight, the energy density was considerably less than that of a lithium ion battery. However, the power density per active material weight was found to be better than that of lithium ion battery. The applications which require high-power capability rather than high-energy density, such as the sub-battery in electronic devices and motor drive assistance in electric vehicles, would be appropriate for organic radical batteries in the future.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,