Article ID Journal Published Year Pages File Type
1286966 Journal of Power Sources 2006 8 Pages PDF
Abstract

The effect of nickel and sulfur substitution for manganese and oxygen on the structure and electrochemical properties of the LiNi0.5Mn1.5O4−xSx is examined. The LiNi0.5Mn1.5O4−xSx (x = 0 and 0.05) compounds are successfully synthesized at 500 and 800 °C by co-precipitation using the metal carbonate (Ni0.5Mn1.5)CO3 as a precursor. The resulting powder with sulfur doping exhibits different morphology from a Ni-only doped spinel in terms of particle size and surface texture. The LiNi0.5Mn1.5O4−xSx (x = 0 and 0.05) powders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge–discharge cycling. The nickel- and sulfur-doped spinel displays excellent capacity retention and rate capability in the 3-V region, compared with Ni-only doped spinel material.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,