Article ID Journal Published Year Pages File Type
1287053 Journal of Power Sources 2006 7 Pages PDF
Abstract

Cobalt silicate hydroxide (Co3[Si2O5]2[OH]2) was prepared by chemical method for use in electrochemical capacitors. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests indicate that the material was pure hexagonal phase with uniform nanometer size distribution. Cyclic voltammeter (CV) and galvanostatic charge/discharge measurements show that the cobalt silicate hydroxide-based electrode has stable electrochemical capacitor properties between potential range of 0.1–0.55 V with a maximum specific capacitance of 237 F g−1 in alkaline solution and 95% of capacity efficiency was reached after 150 cycles. Electrochemical impedance spectra (EIS) investigation illustrates that the capacitance of the test electrode was mainly consisted of pseudo-capacitance, which was caused by underpotential deposition of H3O+ at the electrode surface.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,