Article ID Journal Published Year Pages File Type
1287203 Journal of Power Sources 2006 6 Pages PDF
Abstract

We report the structural and electronic characterization of Li2FeSiO4 synthesized by solid-state reaction. X-ray diffraction, Raman scattering, Fourier transform infrared (FTIR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and magnetization measurements are analyzed. Magnetic susceptibility experiments give evidence that Li2FeSiO4 powders possess an antiferromagnetic ordering below TN = 25 K due to long range Fe–O–Li–O–Fe interactions. Analysis of the paramagnetic region giving the Curie–Weiss parameters θp = −93.5 K and Cp = 4.13 emu K mol−1 shows the divalent state of Fe cations. Electron paramagnetic resonance experiments confirm this electronic configuration. Electrochemical measurements were carried out in lithium cells with LiTFSI in a poly(ethylene oxide) (PEO) polymer electrolyte at 80 °C. The resulting cyclic voltammogram indicates a stable structure for the first cycle with redox peaks at 2.80 and 2.74 V versus Li0/Li+.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,