Article ID Journal Published Year Pages File Type
1287292 Journal of Power Sources 2006 6 Pages PDF
Abstract

The layered LiMn1/3Ni1/3Co1/3O2 cathode materials were synthesized by an oxalate co-precipitation method using different starting materials of LiOH, LiNO3, [Mn1/3Ni1/3Co1/3]C2O4·2H2O and [Mn1/3Ni1/3Co1/3]3O4. The morphology, structural and electrochemical behavior were characterized by means of SEM, X-ray diffraction analysis and electrochemical charge–discharge test. The cathode material synthesized by using LiNO3 and [Mn1/3Ni1/3Co1/3]C2O4·2H2O showed higher structural integrity and higher reversible capacity of 178.6 mAh g−1 in the voltage range 3.0–4.5 V versus Li with constant current density of 40 mA g−1 as well as lower irreversible capacity loss of 12.9% at initial cycle. The rate capability of the cathode was strongly influenced by particle size and specific surface area.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,