Article ID Journal Published Year Pages File Type
1287592 Journal of Power Sources 2006 12 Pages PDF
Abstract

This paper describes a study of steam reforming of methane using unsupported nickel powder catalysts. The reaction yields were measured and the unsupported nickel powder surface was studied to explore its potential as a catalyst in internal or external reforming solid oxide fuel cells. The unsupported nickel catalyst used and presented in this paper is a pure micrometric nickel powder with an open filamentary structure, irregular ‘fractal-like’ surface and high external/internal surface ratio. CH4 conversion increases and coke deposition decreases significantly with the decrease of CH4:H2O ratio. At a CH4:H2O ratio of 1:2 thermodynamic equilibrium is achieved, even with methane residence times of only ∼0.5 s. The CH4 conversion is 98 ± 2% at 700 °C and no coke is generated during steam reforming which compares favorably with supported Ni catalyst systems. This ratio was used in further investigations to measure the hydrogen production, the CH4 conversion, the H2 yield and the selectivity of the CO, and CO2 formation. Methane-rich fuel ratios cause significant deviations of the experimental results from the theoretical model, which has been partially correlated to the adsorption of carbon on the surface according to TEM, XPS and elemental analysis. At the fuel: water ratio of 1:2, the unsupported Ni catalyst exhibited high catalytic activity and stability during the steam reforming of methane at low-medium temperature range.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,