Article ID Journal Published Year Pages File Type
1287774 Journal of Power Sources 2006 11 Pages PDF
Abstract
Three-dimensional computational simulation was employed to illustrate the performance characteristics according to the flow-field design by solving the physics in the flow field and the diffusion layer and by calculating the electrochemical reaction at the catalyst layer. The pressure loss and the concentration distribution in the anode were analyzed for four types of flow field, parallel, serpentine, parallel serpentine and zigzag type. Also the anode current density distribution was predicted at the various overpotentials. The cell performance was proportional to the pressure drop for all the flow-field types. Zigzag type showed the best performance which has a good resistance against the fuel concentration polarization and the next was serpentine.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,