Article ID Journal Published Year Pages File Type
1288519 Journal of Power Sources 2011 5 Pages PDF
Abstract

The hybrid direct carbon fuel cell (HDCFC), combining molten carbonate fuel cell and solid oxide fuel cell technology, is capable of converting solid carbon directly into electrical energy without intermediate reforming. Here, we report the investigation of the HDCFC with yttria stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode and lanthanum strontium manganite (LSM) cathode using the eutectic mixture of 62 mol% Li2CO3 and 38 mol% K2CO3. An open circuit voltage (OCV) of 0.71 V at 800 °C is recorded without the carbonate which increases to 1.15–1.23 V in the presence of the carbonate at the same temperature. In addition, the cell's OCV is enhanced not only by the thermal history but also by the carbonate, which is in excess of 1.57 V after the high temperature treatment. Electrochemical performance analysis indicates a suitable amount of the carbonate enhanced the carbon oxidation. With 1 mm robust thick electrolyte and commercial carbon, the cell (1.13 cm2 active area) generates the peak density of 50 mW cm−2 at 800 °C. There are significant losses from electrolyte resistance, which would be overcome by the application of a thinner electrolyte.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,