Article ID Journal Published Year Pages File Type
1288767 Journal of Power Sources 2011 8 Pages PDF
Abstract

Lithium difluoro (oxalate) borate (LiDFOB) is used as thermal stabilizing and solid electrolyte interface (SEI) formation additive for lithium-ion battery. The enhancements of electrolyte thermal stability and the SEIs on graphite anode and LiFePO4 cathode with LiDFOB addition are investigated via a combination of electrochemical methods, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), as well as density functional theory (DFT). It is found that cells with electrolyte containing 5% LiDFOB have better capacity retention than cells without LiDFOB. This improved performance is ascribed to the assistance of LiDFOB in forming better SEIs on anode and cathode and also the enhancement of the thermal stability of the electrolyte. LiDFOB-decomposition products are identified experimentally on the surface of the anode and cathode and supported by theoretical calculations.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,