Article ID Journal Published Year Pages File Type
1288888 Journal of Power Sources 2011 7 Pages PDF
Abstract

The SnO2@polypyrrole (PPy) nanocomposites have been synthesized by a one-pot oxidative chemical polymerization method. The structure, composition, and morphology of the as-prepared SnO2@PPy nanocomposites are characterized by XRD, FTIR, TG, SEM, and TEM. Electrochemical investigations show that the obtained SnO2@PPy nanocomposites exhibit high discharge/charge capacities and favorable cycling when they are employed as anode materials for rechargeable lithium-ion batteries. For the SnO2@PPy nanocomposite with 79 wt% SnO2, the electrode reaction kinetics is demonstrated to be controlled by the diffusion of Li+ ions in the nanocomposite. The calculated diffusion coefficiency of lithium ions in the SnO2@PPy nanocomposite with 79 wt% SnO2 is 6.7 × 10−8 cm2 s−1, while the lithium-alloying activation energy at 0.5 V is 47.3 kJ mol−1, which is obviously lower than that for the bare SnO2. The enhanced electrode performance with the SnO2@PPy nanocomposite is proposed to derive from the advantageous nanostructures that allow better structural flexibility, shorter diffusion length, and easier interaction with lithium.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,