Article ID Journal Published Year Pages File Type
1289024 Journal of Power Sources 2010 5 Pages PDF
Abstract

Lithium-ion polymer cells composed of a carbon anode and a LiCoO2 cathode are assembled with a gel polymer electrolyte cured by in-situ chemical cross-linking with novel cross-linking agents. The strong interfacial adhesion between the electrodes and the porous polyethylene membrane by the chemical cross-linking results in the stable capacity retention of the cell. However, a reduction in the ionic mobility in both the electrolyte and the electrodes adversely affects the high rate performance of the cell. These results imply that proper control of the cross-linking density in the cell is imperative for achieving good capacity retention and high rate performance of the cell.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,