Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1289076 | Journal of Power Sources | 2010 | 8 Pages |
The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al2O3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al2O3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al2O3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al2O3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH3OH, 2 M CH3OH, and 4 M CH3OH solutions are 28.33, 32.40, and 36.15 mW cm−2, respectively, at room temperature and in ambient air. The QPVA/Al2O3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.