Article ID Journal Published Year Pages File Type
1289183 Journal of Power Sources 2010 6 Pages PDF
Abstract

The electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 were investigated at elevated temperatures (55 °C). As observed by scanning and transmission electron microscopy, BiOF nanolayers with ∼10 nm thickness were coated on the surface of Li[Ni0.5Mn1.5]O4. The BiOF coating layer protected the surface of the active materials from HF generated by the decomposition of LiPF6 in the electrolyte during electrochemical cycling. The dissolution of transition metal elements was also suppressed upon cycling. Therefore, the capacity retention of the BiOF-coated Li[Ni0.5Mn1.5]O4 was obviously improved compared to the pristine Li[Ni0.5Mn1.5]O4 at 55 °C.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,