Article ID Journal Published Year Pages File Type
1289216 Journal of Power Sources 2010 6 Pages PDF
Abstract

In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,