Article ID Journal Published Year Pages File Type
1289374 Journal of Power Sources 2010 4 Pages PDF
Abstract

To improve the performance of direct ethanol fuel cells (DEFCs), a three-dimensional (3D), hierarchically structured Pd electrode has been successfully fabricated by directly electrodepositing Pd nanoparticles on the nickel foam (referred as Pd/Nickel foam electrode hereinafter). The electrochemical properties of the as-prepared electrode for ethanol oxidation have been investigated by cyclic voltammetry (CV). The results show that the oxidation peak current density of the Pd/Nickel foam electrode is 107.7 mA cm−2, above 8 times than that of Pd film electrode at the same Pd loading (0.11 mg cm−2), and a 90 mV negative shift of the onset potential is found on the Pd/Nickel foam electrode compared with the Pd film electrode. Furthermore, the peak current density of the 500th cycle remains 98.1% of the maximum value for the Pd/Nickel foam electrode after a 500-cycle test, whereas it is only 14.2% for the Pd film. The improved electrocatalytic activity and excellent stability of the Pd/Nickel foam electrode make it a favorable platform for direct ethanol fuel cell applications.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,