Article ID Journal Published Year Pages File Type
1289385 Journal of Power Sources 2010 12 Pages PDF
Abstract
A three-dimensional, two-phase, multi-component model is used to investigate the effects of channel assembled angle on the performance of proton exchange membrane (PEM) fuel cell, including distribution of current density, membrane water content and local temperature. The flow-fields are assembled by single serpentine channels in anode and cathode with intersection angles of 0°, 90°, 180° and 270°, respectively. At high inlet humidity condition each flow-field has its owned strengths. Flow-fields with channel assembled angles of 0°, 90° and 270° show most uniform membrane water content, current density and local temperature distributions, respectively. However, at low inlet humidity condition, flow-field with channel assembled angle of 90° represents highest performance and uniformities in all aspects. Flow-field design for PEM fuel cell should take into account the effects of channel assembled angle on cell performance.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,