Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1289510 | Journal of Power Sources | 2010 | 9 Pages |
The high performance poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) proton-conducting composite membrane is prepared by a solution casting method. The characteristic properties of these blend composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), micro-Raman spectroscopy, dynamic mechanical analysis (DMA), methanol permeability measurement and AC impedance method. It is found that the peak power densities of the DMFC with 1, 2, and 4 M CH3OH fuels are 12.85, 23.72, and 10.99 mW cm−2, respectively, at room temperature and ambient air. Especially, among three methanol concentrations, the 2 M methanol shows the highest peak power density among three methanol concentrations. The results indicate that the air-breathing direct methanol fuel cell comprised of a novel PVA/nt-TiO2/PSSA composite polymer membrane has excellent electrochemical performance and stands out as a viable candidate for applications in DMFC.