Article ID Journal Published Year Pages File Type
1289535 Journal of Power Sources 2010 7 Pages PDF
Abstract

CoFe2O4 has been demonstrated as a potential spinel coating for protecting the Cr-containing ferritic interconnects. This spinel had an electrical conductivity of 0.85 S cm−1 at 800 °C in air and an average coefficient of thermal expansion (CTE) of 11.80 × 10−6 K−1 from room temperature to 800 °C. A series of Co–Fe alloys were co-deposited onto the Crofer 22 APU ferritic steel via electroplating with an acidic chloride solution. After thermal oxidation in air at 800 °C, a CoFe2O4 spinel layer was attained from the plated Co0.40Fe0.60 film. Furthermore, a channeled Crofer 22 APU interconnect electrodeposited with a 40-μm Co0.40Fe0.60 alloy film as a protective coating was evaluated in a single-cell configuration. The presence of the dense, Cr-free CoFe2O4 spinel layer was effective in blocking the Cr migration/transport and thus contributed to the improvement in cell performance stability.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,