Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1289590 | Journal of Power Sources | 2011 | 9 Pages |
Abstract
This study demonstrates a method for improving the electrolyte distribution in catalyst layers and enhancing the utilization of catalyst existing in primary pores. Bis(trialkoxysilyl)alkanes (BTAS-alkanes) and 3-(trihydroxysilyl)-1-propane sulfonic acid (THS)Pro-SO3H) precursors have been used to prepare a series of hybrid electrolytes with various organic segment lengths of BTAS-alkanes and ratios of organic moiety and sulfonic acid groups. Investigations of BTAS-alkanes series includes bis(triethoxysilyl)octane (BTES-Oct), bis(trimethoxysilyl)hexane (BTMS-Hex), and bis(triethoxysilyl)ethane (BTES-Eth). Small angle X-ray spectroscopy (SAXS) identifies morphological phase separation in BTES-Oct and BTMS-Hex hybrid electrolytes. The results of mercury porosimetry and BET porosimetry show that the hybrid electrolytes have better capability than Nafion ionomer to penetrate into primary pores of the catalyst layers. Electrochemical measurements including electrode polarization, electrochemical active surface (EAS) and electrochemical impedance spectroscopy (EIS) are discussed. The BTES-Oct or BTMS-Hex hybrid electrolytes with higher ratio of organic moiety and sulfonic acid group have achieved better electrode performance. Oxygen benefit current (OBC) results indicate that higher ratios of BTES-Oct/(THS)Pro-SO3H provides higher hydrophobicity with better gas transport properties. However, the hybrid electrodes exhibit lower cathode performance than Nafion®-based electrodes due to excessive electrolyte incorporated in the catalyst layer.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
C.W. Lin, L.C. Chung, R.S. Veerapur, F.C. Yang,