Article ID Journal Published Year Pages File Type
1289599 Journal of Power Sources 2011 4 Pages PDF
Abstract
A novel catalyst layer assisted by a Nafion-silica electrolyte for elevated-temperature direct methanol fuel cells is fabricated through a self-assembly process. The catalyst layer demonstrates good water retention abilities and structural stability during the fuel cell operation. After a dehydration period of 30 min under 25% relative humidity at 100 °C, the proton conductivity of the novel catalyst layer is maintained at ∼0.014 S cm−1, and the single cell assembled with the novel catalyst layer achieves a maximum power density of 108 mW cm−2. Moreover, a stability operation test conducted under 20 ppm CO and a current density of 100 mA cm−2 demonstrates the structural stability and water retention abilities of the catalyst layer. The cell voltage of a fuel cell featuring the novel catalyst layer decreases from 0.45 to 0.38 V at a slight degradation rate of 0.6 mV min−1.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,