Article ID Journal Published Year Pages File Type
1289835 Journal of Power Sources 2009 8 Pages PDF
Abstract

We explore an approach to effectively enhance the properties of cost-effective hydrocarbon proton-exchange membranes for application in the direct methanol fuel cell (DMFC). This approach utilizes sulfonated silica nanoparticles (SA-SNP) as additives to modify sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK). The interaction between the sulfonic acid groups of SA-SNP and those of SPAEEKK combined with hydrophilic–hydrophobic phase separation induce the formation of proton conducting channels, as evidenced by TEM images, which contribute to increases in the proton conductivity of the SPAEEKK/SA-SNP nanocomposite membrane. The presence of SA-SNP nanoparticles also reduces methanol crossover in the membrane. Therefore, the SPAEEKK/SA-SNP nanocomposite membrane shows a high selectivity, which is 2.79-fold the selectivity of Nafion®117. The improved selectivity of the SPAEEKK/SNP nanocomposite membrane demonstrates potential of this approach in providing hydrocarbon-based PEMs as alternatives to Nafion in direct methanol fuel cells.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,