Article ID Journal Published Year Pages File Type
1289844 Journal of Power Sources 2009 6 Pages PDF
Abstract

La0.8Sr0.2Co0.5Fe0.5O3−δ (LSCF) cathodes infiltrated with electrocatalytically active Pd and (Gd,Ce)O2 (GDC) nanoparticles are investigated as high performance cathodes for the O2 reduction reaction in intermediate temperature solid oxide fuel cells (IT-SOFCs). Incorporation of nano-sized Pd and GDC particles significantly reduces the electrode area specific resistance (ASR) as compared to the pure LSCF cathode; ASR is 0.1 Ω cm2 for the reaction on a LSCF cathode infiltrated with 1.2 mg cm−2 Pd and 0.06 Ω cm2 on a LSCF cathode infiltrated with 1.5 mg cm−2 GDC at 750 °C, which are all significantly smaller than 0.22 Ω cm2 obtained for the reaction on a conventional LSCF cathode. The activation energy of GDC- and Pd-impregnated LSCF cathodes is 157 and 176 kJ mol−1, respectively. The GDC-infiltrated LSCF cathode has a lower activation energy and higher electrocatalytic activity for the O2 reduction reaction, showing promising potential for applications in IT-SOFCs.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,