Article ID Journal Published Year Pages File Type
1289974 Journal of Power Sources 2009 5 Pages PDF
Abstract

The amorphous citrate precursor method was employed to prepare perovskite of La0.6Ca0.4Co0.8Ir0.2O3 as a bi-functional electrocatalyst for oxygen reduction and evolution in an alkaline electrolyte. The X-ray diffraction pattern of the as-synthesized powders exhibited a majority phase identical to that of La0.6Ca0.4CoO3, indicating successful incorporation of Ir4+ at the Co cation sites. Scanning Electron Microscope images demonstrated a foam-like microstructure with a surface area of 13.31 m2 g−1. For electrochemical characterization, the La0.6Ca0.4Co0.8Ir0.2O3 particles were supported on carbon nanocapsules (CNCs) and deposited on commercially available gas diffusion electrodes with a loading of 2.4 mg cm−2. In current–potential polarizations, La0.6Ca0.4Co0.8Ir0.2O3/CNCs revealed more enhanced bi-functional catalytic abilities than La0.6Ca0.4CoO3/CNCs. Similar behaviors were observed in galvanostatic profiles for oxygen reduction and evolution at current densities of 50 and 100 mA cm−2 for 10 min. Moreover, notable changes from zeta potential measurements were recorded for La0.6Ca0.4Co0.8Ir0.2O3 relative to La0.6Ca0.4CoO3. In lifetime determinations, where a repeated 3 h sequence of oxygen reduction/resting/oxygen evolution/resting was imposed, La0.6Ca0.4Co0.8Ir0.2O3/CNCs delivered a stable and sustainable behavior with moderate degradation.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,