Article ID Journal Published Year Pages File Type
1290093 Journal of Power Sources 2010 5 Pages PDF
Abstract

Internal temperatures in a proton exchange membrane (PEM) fuel cell govern the ionic conductivities of the polymer electrolyte, influence the reaction rate at the electrodes, and control the water vapor pressure inside the cell. It is vital to fully understand thermal behavior in a PEM fuel cell if performance and durability are to be optimized. The objective of this research was to design, construct, and implement thermal sensors based on the principles of the lifetime-decay method of phosphor thermometry to measure temperatures inside a PEM fuel cell. Five sensors were designed and calibrated with a maximum uncertainty of ±0.6 °C. Using these sensors, surface temperatures were measured on the cathode gas diffusion layer of a 25 cm2 PEM fuel cell. The test results demonstrate the utility of the optical temperature sensor design and provide insight into the thermal behavior found in a PEM fuel cell.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,