Article ID Journal Published Year Pages File Type
1290155 Journal of Power Sources 2008 8 Pages PDF
Abstract

A literature review is conducted to summarize the studies on the identification of impurities in coal syngas and their effects on the performance of Ni-yttria stabilized zirconia (Ni-YSZ) anode of solid oxide fuel cells (SOFCs). Coal syngas typically contains major species, CO, H2, CO2, H2O, CH4, N2, and H2S as well as trace impurities. Thermodynamic equilibrium calculations have indicated that trace impurities species such as Be, Cr, K, Na, and V in the coal syngas form condensed phases under warm gas cleanup conditions and can be effectively removed by the cleanup processes. For meaningful data comparison, a practical parameter is formulated to quantify the level of degradation normalized with respect to the relevant experimental parameters. Experimental results show that the existence of Hg, Si, Zn and NH3 in the coal syngas does not significantly affect the performance of the Ni-YSZ anode. The presence of Cd and Se in the syngas impacts the SOFC anode performance to some extent. Impurity species such as Cl, Sb, As, and P cause severe cell voltage degradation due to attack on the Ni-YSZ anode. Sb, As and P have the potential to react with Ni to form secondary phases in the Ni-YSZ anode, which deteriorate the catalytic activity of the anode.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,