Article ID Journal Published Year Pages File Type
1290389 Journal of Power Sources 2008 7 Pages PDF
Abstract

Novel cross-linked composite membranes were synthesized to investigate their applicability in anion exchange membrane fuel cells. These membranes consist of quaternized poly(vinyl alcohol) (QAPVA) and quaternized chitosan (2-hydroxypropyltrimethyl ammonium chloride chitosan, HACC) with glutaraldehyde as the cross-linking reagent. The membranes were characterized in term of their water content, ion exchange capacity (IEC), ion conductivity and methanol permeability. FTIR, X-ray diffraction and scanning electron microscopy (SEM) were also used to investigate the relation between the structure and performance of the composite membranes. The composite membranes have a high conductivity (10−3 to 10−2 S cm−1), and a low methanol permeability (from 5.68 × 10−7 to 4.42 × 10−6 cm2 s−1) at 30 °C. After reviewing all pertinent characteristics of the membranes, we find that the membrane structure is the principal factor affecting the conductivity and methanol permeability of these membranes.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,