Article ID Journal Published Year Pages File Type
1290432 Journal of Power Sources 2008 6 Pages PDF
Abstract

The physicochemical properties of molten alkali bis(trifluoromethylsulfonyl)amide, MTFSI (M = Li, K, Cs), mixture (xLiTFSI = 0.20, xKTFSI = 0.10, xCsTFSI = 0.70) were studied to develop a new rechargeable lithium battery operating at intermediate temperature (100–180 °C). The viscosity and ionic conductivity of this melt at 150 °C are 87.2 cP and 14.2 mS cm−1, respectively. The cyclic voltammetry revealed that the electrochemical window at 150 °C is as wide as 5.0 V, and that the electrochemical deposition/dissolution of lithium metal occurs at the cathode limit. A Li/MTFSI (M = Li, K, Cs)/LiFePO4 cell showed an excellent cycle performance at a constant current rate of C/10 at 150 °C; 95% of the initial discharge capacity was maintained after 50 cycles. Except for the initial few cycles, the coulombic efficiencies were approximately 100% for all the cycles, indicating the stabilities of the molten MTFSI mixture and all the electrode materials.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , ,