Article ID Journal Published Year Pages File Type
1290453 Journal of Power Sources 2008 7 Pages PDF
Abstract

Investigations on anode-supported solid oxide fuel cells (SOFCs) using Ni-based anode supports are presented aiming at understanding how much oxidation such a cell can tolerate before incurring irreversible mechanical damage. The cells were oxidised both directly in air and electrochemically. The different oxidation procedures performed exhibited different damage modes. For free-standing cells oxidised in air, the main damage mode was electrolyte cracking after oxidation of approximately 50% of the Ni in the substrate. However, cells oxidised electrochemically failed by substrate cracking after only ca. 5% of the Ni was oxidised, mainly due to the non-uniform nature of oxidation in the SOFC. Models of the stress generation and fracture processes were developed for interpretation of the results.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,