Article ID Journal Published Year Pages File Type
1290561 Journal of Power Sources 2008 4 Pages PDF
Abstract

A novel Pt-sputtered electrode based on a blend layer of carbon black (CB) and carbon nanotubes (CNTs) is developed for polymer electrolyte fuel cells. The Pt is sputtered on the surface of the blend to form a catalyst layer. The CNTs generate a pore in the blend layer, and the CB provides a high surface roughness for the blend layer. At a CNT content of 50 wt.%, the maximum value (20.6 m2 g−1) for the electrochemical area of the Pt is obtained, which indicates that the surface area of the blend layer exposed for Pt deposition is the largest. The power density of a membrane-electrode assembly (MEA) employing the Pt-sputtered electrodes shows a linear increase with electrochemical area. The mass activity of the optimized Pt-sputtered electrode with a Pt loading of 0.05 mg cm−2 is 8.1 times that of an electrode with a Pt loading of 0.5 mg cm−2 prepared using a conventional screen-printing technique. Excellent mass transfer is obtained with the Pt-sputtered electrode.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,