Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1290562 | Journal of Power Sources | 2008 | 4 Pages |
Abstract
A novel design of solid oxide fuel cell (SOFC) which utilizes a thick film (<20 μm) as an electrolyte support is developed and tested. The sintered 16 μm-thick yttria-stabilized zirconia (YSZ) electrolyte film is mounted on a 1-mm thick YSZ ring by sintering the two pieces together. With this new configuration, it is possible to fabricate a thick (<20 μm) electrolyte-supported SOFC and measure the power density of the unit cell. With LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ) as a cathode and Ni–YSZ as a composite anode, the cell with a 16 μm-thick YSZ electrolyte achieves a high performance, i.e., a maximum power density of 590 mW cm−2 at 800 °C. This value is comparable with that of most anode-supported SOFCs using YSZ electrolytes.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Jong Hoon Joo, Gyeong Man Choi,