Article ID Journal Published Year Pages File Type
1290729 Journal of Power Sources 2008 6 Pages PDF
Abstract

Corrosion resistance of the chromized 316L stainless steel was studied in a proton exchange membrane fuel cell (PEMFC) operating condition. Cr-rich surface layer was formed by pack cementation technique and electrochemical properties of the chromized surface were examined by potentiodynamic and potentiostatic tests. Results showed that the Cr-rich layers underneath the free surface passivated the surface and protect the surface from corrosion in 0.5 M H2SO4 solution at 80 °C. However, the Cr-rich layers showed columnar grains with voids when the stainless steel was pack cemented for an extended period of time, resulting in drastic degradation of corrosion resistance. The optimum condition for the best corrosion resistance in the PEMFC operating condition was obtained without sacrificing the interfacial contact resistance.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,